
Collective Tree Exploration R. Cosson

Exercise 1 Collective Exploration

Figure 1 – Can Astérix, Obélix, and Panoramix escape the maze faster collectively than if they
were alone ?

A team of k mobile agents/robots, initially located at the root of an unknown tree, must traverse
all its edges with a minimum number of movements. We consider a distributed model (agents
communicate only by writing information on the nodes) and asynchronous (no guarantees on
the relative speeds of the agents). More precisely, we consider the following model : DACTE
(Distributed Asynchronous Collective Tree Exploration).

There are many ways to represent a tree in computer science. In this exercise, a tree is represented
by a subset of ∪n∈NNn. This tree T ⊂ ∪n∈NNn satisfies two properties :

— () ∈ N0 represents (by convention) the root of the tree () ∈ T ,
— if a node u = (u1, . . . , ud) ∈ T , for d ≥ 1, then its parent p(u) = (u1, . . . , ud−1) ∈ T .

The following terms will also be used. The node u = (u1, . . . , ud) ∈ T is at depth d, denoted
d(u) = d. The depth of the tree is defined as D = maxu∈T d(u). Its number of nodes is defined as
n = |T |. And ud is called the port number at p(u) that gives access to u.

The exploration is divided into discrete rounds. Initially, at t = 0, all robots are located at the root
of the unknown tree, and all registers are empty. At each round t ∈ N, an omniscient adversary
(who sees the entire situation) chooses a robot it ∈ [k] to move. A robot’s movement consists of
the following consecutive instantaneous steps :

S1. The robot reads the whiteboard at its current position ;
S2. The robot observes the list of adjacent edges (identified by their ‘port number’) ;
S3. The robot writes to the whiteboard at its position and updates its internal memory ;
S4. The robot moves along an adjacent edge of its choice.

The exploration ends at the first round t ∈ N during which all nodes have been visited by at least
one robot. The goal is to design algorithms that explore any tree with n nodes and depth D in at
most f(n,D) rounds, for some bivariate function f(·, ·).

1. Show that such a function must satisfy f(n,D) ≥ 2n− kD.

2. For k = 1 and k = 2, present an algorithm with f(n,D) = 2n. Explain why this does not
generalize to k ≥ 3.

3. Show that in the model where all robots move along an edge at each round (synchro-
nous model), an asynchronous guarantee in f(n,D) implies a synchronous guarantee in
f(n,D)/k.

Definition 1 (Locally Greedy Algorithm). A locally greedy algorithm is such that each robot i
maintains a target node vt(i) ∈ V , and the moving robot follows these rules at time t :
R1. If adjacent to an unexplored edge, then the robot traverses an unexplored edge ;
R2. Else the robot moves towards its target ;
R3. The target is updated before the move if neither (R1.) nor (R2.) can apply (the target is

said to be saturated).

1

Collective Tree Exploration R. Cosson

4. Show that after M moves of a locally greedy algorithm, the number of edges explored by
the algorithm is at least

1

2

M −
∑
i∈[k]

∑
t<M

d(vt(i), vt+1(i))

where vt(i) denotes the target of robot i at move t, and d(·, ·) is the distance in the
underlying tree.

We now study a distributed algorithm called "Breadth First Depth Next" (BFDN). The algorithm
is locally greedy and described as follows. When a robot saturates a target other than the root, its
target is updated to be the root. When the robot saturates its target, which is the root, its target
is updated using Algorithm 1.

5. Show that Algorithm 1 is correct, i.e., it assigns targets to robots saturating the root
until the entire tree is explored. Hint : Show that all unexplored nodes are descendants
of nodes in A.

6. Show that at any time |A| ≤ k.

7. Show that there can be at most O(Dk log(k)) calls to Algorithm 1 before the exploration
is complete. Hint : First, show that there are at most O(k2) calls to Algorithm 1 before
an increment of d, then refine this guarantee.

8. Show that BFDN explores any tree with n nodes and depth D in at most 2n+O(k log(k)D2)
iterations. Explain why it can be implemented with distributed communication.

Open question : Are there collective exploration algorithms for graphs ? More specifically, is
there an algorithm for k robots that explores any graph with m edges and a diameter D in
2m+O(f(k,D)) iterations ?

Algorithm 1 BFDN “Breadth-First Depth-Next” (central scheduler at the root)

1: d← 0 ▷ current depth of work
2: A← {r} ▷ list of possible targets at depth d
3: R← ∅ ▷ elements of A from which a robot has returned (to r)
4: while A ̸= ∅ and a robot i saturates the root do
5: a← last node in A visited by robot i
6: R← R ∪ {a}
7: Update C1(a), the list of children of a from which a robot has returned (to a)
8: Update C2(a), the list of children of a from which no robot has returned (to a)
9: if A \R = ∅ then

10: d← d+ 1
11: A← ∪a∈AC

2(a)
12: end if
13: Assign to robot i a target from A \R with the minimal load (the load of a target is the

number of robots already assigned to it).
14: end while

2

